
GENETIC SCREENING

Making better CRISPR libraries
A new algorithm improves the performance of CRISPR-based genetic

screens in mammals.
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S
ince the human genome sequence was

completed in 2003, genome-wide screen-

ing has become a popular method for

quickly associating specific genes with their roles

in cells. More recently, the CRISPR-Cas9 system

has become the dominant tool for genome-edit-

ing (Jinek et al., 2012; Cong et al., 2013;

Mali et al., 2013) and it has subsequently been

adapted to make highly effective genetic screen-

ing platforms (Shalem et al., 2014; Zhou et al.,

2014).

The CRISPR-Cas9 system is derived from the

methods used by certain bacteria to identify

and cut up foreign genetic material

(Barrangou et al., 2007). To edit the genome,

specially designed RNA molecules guide a

nuclease enzyme called Cas9 to the location of

interest in the DNA sequence; the Cas9 enzyme

then cuts the DNA at this position. A mutant

form of Cas9 that is unable to cut DNA can also

be used to generate libraries of single guide

RNAs (sgRNAs) that target regions around tran-

scription start sites in the genome. By allowing

researchers to either repress or activate gene

expression – techniques that are known as

CRISPR interference (CRISPRi) and CRISPR

activation (CRISPRa), respectively – these

sgRNAs make it possible to carry out powerful

genetic screens in mammalian cells

(Gilbert et al., 2014; Konermann et al., 2015).

Now, in eLife, Jonathan Weissman and col-

leagues at the University of California, San Fran-

cisco – including Max Horlbeck as first author –

report that a new algorithm can predict the

activity of sgRNAs more accurately than existing

algorithms (Horlbeck et al., 2016a).

Many factors affect the ability of sgRNAs to

activate or repress genes including the

sequence, length and secondary structure of

the sgRNA (Doench et al., 2014; Xu et al.,

2015). Furthermore, the DNA in mammalian

cells (and also in other eukaryotic cells) is pack-

aged inside structures called nucleosomes,

which make it difficult for the Cas9 enzyme to

access the DNA (Hinz et al., 2015;

Horlbeck et al., 2016b; Isaac et al., 2016).

This is particularly important for CRISPRi and

CRISPRa screens because the mutant Cas9

enzyme must stay bound to the DNA for

extended periods of time. Horlbeck et al. there-

fore optimized the design of their sgRNAs to

target DNA regions that were not packaged in

nucleosomes and thus were more accessible to

mutant Cas9.

To improve the CRISPRi and CRISPRa libraries

that they had made previously (Gilbert et al.,

2014), Horlbeck et al. analyzed data from 30

CRISPRi screens and 9 CRISPRa screens and

defined “activity scores” for every sgRNA rela-

tive to the sgRNA with the strongest activity for

each gene. They then used this information to

make new CRISPRi and CRISPRa libraries that

contained the ten most active sgRNAs for each

gene.

The new human CRISPRi library was used to

screen chronic myeloid leukemia K562 cells to
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identify genes that are essential for cell

growth. Impressively, this library was able to

identify about 10% more essential genes com-

pared with the original CRISPRi library

(Gilbert et al., 2014). Furthermore, a half-sized

version of the new human CRISPRi library (with

only the top five sgRNAs per gene) performed

similarly to the full-sized version. This is reas-

suring because smaller libraries are easier to

construct and use in screens. Similarly, Horl-

beck et al. also demonstrated that the new

human CRISPRa library outperformed the origi-

nal one.

Horlbeck et al. found that, when used with

the mutant form of Cas9, none of the CRISPRi

libraries had toxic side effects like those

observed with other approaches that use the

active enzyme (Wang et al., 2015). This makes it

possible to effectively identify genes, even if

they show only slight differences in expression

compared to negative controls.

To summarize, this study established an effec-

tive algorithm to predict the activity of sgRNAs

based on the location of nucleosomes in the

genome. Horlbeck et al. used this algorithm to

generate new CRISPRi and CRISPRa libraries

with much improved performance in genetic

screens in humans and mice. It remains to be

seen if the algorithm could be used to optimize

other types of CRISPR screens, especially ones

that use the normal Cas9 enzyme.
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