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Genome editing technologies using engineered nucleases, 
such as zinc finger nucleases1, transcription activator-like 
effector nucleases (TALENs)2–4 and Cas proteins of CRISPR 

system5–7, have been applied to manipulate the genome in a myr-
iad of organisms. Recently, a cytidine or an adenosine deaminase 
has been coupled with CRISPR-Cas9 to create programmable 
DNA base editors8–10, offering new opportunities for correcting 
disease-causing mutations. In addition to DNA editing, the ADAR 
adenosine deaminases have been exploited to achieve precise ade-
nosine-to-inosine editing of RNAs. Three kinds of ADAR protein 
have been identified in mammals, ADAR1 (isoforms p110 and 
p150), ADAR2 and ADAR3 (refs. 11,12), whose substrates are double-
stranded RNAs. Inosine is believed to mimic guanosine (G) during 
translation13,14. To achieve targeted RNA editing, the ADAR protein 
or its catalytic domain was fused with a λN peptide15–17, a SNAP-
tag18–22 or a Cas protein (dCas13b)23, and a guide RNA (gRNA) was 
designed to recruit the chimeric ADAR protein to the specific site. 
Alternatively, overexpressing ADAR1 or ADAR2 proteins together 
with an R/G motif-bearing gRNA was also reported to enable tar-
geted RNA editing24–27.

All these reported nucleic acid editing methods in mammalian 
systems rely on ectopic expression of two components: an enzyme 
and a gRNA. Although these binary systems work efficiently in 
most studies, some inherited obstacles limit their broad applica-
tions, especially in therapies. Because the most effective in  vivo 
delivery for gene therapy is through viral vectors28, and the highly 
desirable adeno-associated virus vectors are limited in cargo size 
(~4.5 kilobases), this makes it challenging to accommodate both the 
protein and the gRNA29,30. Over-expression of ADAR1 has recently 
been reported to confer oncogenicity in multiple myelomas due to 
aberrant hyper-editing on RNAs31 and to generate substantial global 
off-targeting edits32. In addition, ectopic expression of proteins  
or their domains of non-human origin runs the potential risk of 

eliciting immunogenicity30,33. Moreover, pre-existing adaptive 
immunity and p53-mediated DNA damage response may compro-
mise the efficacy of the therapeutic protein, such as Cas9 (refs. 34–38). 
Endogenous mechanisms for RNA editing have been harnessed by 
injecting pre-assembled target transcript:RNA duplex into Xenopus 
embryos39. Stafforst and colleagues recently reported a RNA edit-
ing method, named RESTORE, which works through recruiting 
endogenous ADARs using chemosynthetic antisense oligonucle-
otides with complex chemical modification40. Here, we describe an 
alternative approach that uses endogenous ADAR for RNA editing. 
We show that expressing arRNA enables efficient, precise editing of 
endogenous RNA and correction of pathogenic mutations.

Results
Exploiting endogenous ADAR for RNA editing. We fused the 
deaminase domain of the hyperactive E1008Q mutant ADAR1 
(ADAR1DD)41 to the catalytic inactive LbuCas13 (dCas13a), a RNA-
guided RNA-targeting CRISPR effector42 (Supplementary Fig. 1a).  
To assess RNA editing efficiency, we constructed a surrogate 
reporter harboring mCherry and EGFP genes linked by 3× GGGGS-
coding sequence and an in-frame UAG stop codon (Reporter-1, 
see Supplementary Fig. 1b). The reporter-transfected cells only 
expressed mCherry protein, while targeted editing on the UAG of 
the reporter transcript could convert the stop codon to UIG and 
consequently permit the downstream enhanced green fluorescent 
protein (EGFP) expression. Such a reporter allows us to measure the 
A-to-I editing efficiency through monitoring EGFP level. We then 
designed hU6 promoter-driven CRISPR RNAs (crRNAs) contain-
ing 5′ scaffolds subjected to Cas13a recognition and variable lengths 
of spacer sequences for targeting (crRNACas13a, see Supplementary 
Table 1). The sequences complementary to the target transcripts 
all contain a CCA opposite to the UAG codon so as to introduce 
a cytidine (C) mis-pairing with the adenosine (A) (Supplementary 
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Fig. 1b) because adenosine deamination preferentially occurs in 
the A-C mismatch site13,14. To test the optimal length of the crRNA, 
non-targeting or targeting crRNAs of different lengths were coex-
pressed with dCas13a-ADAR1DD in human embryonic kidney 
293T (HEK293T) cells stably expressing the Reporter-1. Evidence 
of RNA editing indicated by the EGFP expression was observed 
with crRNAs containing matching sequences at least 40-nucleo-
tides (nt) long, and the longer the crRNAs, the higher the editing 
efficiency (Supplementary Fig. 1c). Expression of long crRNACas13a 
alone appeared sufficient to activate EGFP expression, and the 
coexpression of dCas13a-ADAR1DD rather decreased crRNA activ-
ity (Supplementary Fig. 1c,d). The EGFP expression was clearly 
sequence-dependent because the control RNA (Ctrl RNA) could 
not activate EGFP expression (Supplementary Fig. 1c,d).

Moreover, we tested a recently reported RNA editing system, 
termed REPAIR, which used dCas13b to direct targeted RNA edit-
ing by ADAR proteins23. We found that a 70-nt crRNA spacer with 
the dCas13b scaffold (crRNAdCas13b) could also induce EGFP expres-
sion in the absence of dCas13b-ADAR fusions, while depletion of 
endogenous ADAR1 abrogated this effect (Supplementary Table 1 
and Supplementary Fig. 1e).

As certain long engineered crRNACas13a enabled RNA editing 
independent of dCas13a-ADAR1 fusions, we decided to remove the 
Cas13a-recruiting scaffold from the crRNA. It turned out that a 70-nt 
gRNA devoid of scaffold sequence induced strong EGFP expression in 
close to 40% of total cells harboring the Reporter-1 (Fig. 1a,b). Because 
endogenous ADAR proteins could edit dsRNA substrates12, we rea-
soned that the long gRNAs could anneal with the target transcripts to 
form dsRNA substrates that in turn recruit endogenous ADAR pro-
teins for targeted editing. We thus designated such a gRNA as arRNA.

To determine whether endogenous ADAR proteins are responsi-
ble for the above observation, we examined arRNA-mediated RNA 
editing in ADAR-deficient cells. Since ADAR2 messenger RNA was 
barely detectable in HEK293T cells (Supplementary Fig. 2a), we gen-
erated HEK293T ADAR1−/− cells, rendering this cell line deficient 
in both ADAR1 and ADAR2 (Fig. 1c,d). The depletion of ADAR1 
abrogated 70-nt arRNA (arRNA70)-induced EGFP signals (Fig. 1b), 
demonstrating that arRNA-induced EGFP reporter expression 
solely depended on native ADAR1. Moreover, exogenous expres-
sion of ADAR1p110, ADAR1p150 or ADAR2 in HEK293T ADAR1−/− 
cells (Fig. 1c,d) successfully rescued the expression of EGFP (Fig. 1e  
and Supplementary Fig. 2b). Sanger sequencing analysis on the 
arRNA70-targeting region showed an A/G overlapping peak at 
the predicted adenosine site within UAG, indicating a significant 
A-to-I (G) conversion (Fig. 1f). Next-generation sequencing (NGS) 
further confirmed that the A-to-I conversion rate was about 13%  
(Fig. 1g). The quantitative PCR (qPCR) analysis showed that arRNA70 
did not perturb the expression of targeted transcripts (Supplementary 
Fig. 3), ruling out the possible RNA interference (RNAi) effect of the 
arRNA. Collectively, our data demonstrated that the arRNA can gen-
erate a significant level of editing on the targeted transcripts.

LEAPER enables RNA editing in multiple cell lines. Because 
the expression of endogenous ADAR proteins is a prerequisite for 
LEAPER-mediated RNA editing, we tested the performance of 
LEAPER on a panel of cell lines originated from distinct tissues, 
including HT29, A549, HepG2, RD, SF268, SW13 and HeLa. We 
first examined the endogenous expression of all three kinds of 
ADAR proteins. ADAR1 was highly expressed in all tested cell 
lines, but ADAR3 was detected only in HepG2 and HeLa cells 
(Supplementary Fig. 4a,b). ADAR2 was non-detectable in any cells, 
a result that was not due to the failure of western blotting because 
ADAR2 protein could be detected from ADAR2-overexpressing 
HEK293T cells (Supplementary Fig. 4a,b), consistent with previous 
reports that ADAR1 is ubiquitously expressed, while the expres-
sions of ADAR2 and ADAR3 are restricted to certain tissues11.

We then set out to test the editing efficiencies of a re-designed 
arRNA71 targeting the Reporter-1 (Supplementary Fig. 5a and 
Supplementary Table 2) in these cell lines. LEAPER worked in all 
tested cells, albeit with varying efficiencies (Supplementary Fig. 4c). 
These results were in agreement with the previous report that the 
ADAR1/2 protein levels correlate with the RNA editing yield43, with 
the exception of HepG2 and HeLa cells. The suboptimal editing effi-
ciencies in these two lines were likely due to the abundant expres-
sions of ADAR3 (Supplementary Fig. 4a,b), which has been reported 
to play an inhibitory role in RNA editing44. LEAPER also worked in 
three different cell lines of mouse origin (NIH3T3, mouse embry-
onic fibroblast (MEF) and B16) (Supplementary Fig. 4d), paving the 
way for testing its therapeutics potential through animal and disease 
models. Collectively, we conclude that LEAPER is a versatile tool for 
a wide spectrum of cell types and for different organisms.

Characterization and optimization of LEAPER. To better charac-
terize and optimize LEAPER, we investigated the choices of nucleo-
tide opposite to the adenosine within the UAG triplet of the targeted 
transcript. Reporter-1-targeting arRNA71 showed variable editing 
efficiencies with a changed triplet (5′-CNA, N denotes one of A/U/
C/G) opposite to the targeted UAG. The A-C mismatch resulted in 
the highest editing efficiency, and the A-G mismatch yielded the 
fewest evident edits (Supplementary Table 2 and Fig. 2a). We then 
tested all 16 combinations of 5′ and 3′ neighbor sites surrounding the 
cytidine (5′-N1CN2) of the A-C mismatch (Supplementary Table 2)  
and found that the 3′ neighboring adenosine was required for  
the efficient editing, while adenosine is the least favorable nucleotide 
at the 5′ site (Fig. 2b,c). We thus concluded that the CCA motif on the 
arRNA confers the highest editing efficiency targeting the UAG site.

Length of RNA appeared relevant to arRNA efficiency in direct-
ing the editing on the targeted transcripts (Supplementary Fig. 1c), 
consistent with a previous report43. To fully understand this effect, 
we tested arRNAs with variable lengths targeting two different 
reporter transcripts—Reporter-1 and Reporter-2 (Supplementary 
Fig. 5a,b and Supplementary Table 2). Based on the reporter EGFP 
activities, the length of arRNA correlated positively with the edit-
ing efficiency, for both reporters, peaking at 111–191-nt (Fig. 2d). 
Although one arRNA51 to be appeared working, 71-nt was the mini-
mal length for arRNA to work for both reporters (Fig. 2d).

Next, we investigated the effect of the A-C mismatch position 
within an arRNA on editing efficiency. We fixed the lengths of all 
arRNAs to 71-nt, and slid the UAG-targeting ACC triplet from 5′ to 
3′ within arRNAs (Supplementary Table 2). It turned out that plac-
ing the A-C mismatch in the middle region resulted in high editing 
yield, and arRNAs with mismatch sites close to the 3′ end outper-
formed those close to the 5′ end in both reporters (Fig. 2e). For 
convenience, we placed the A-C mismatch at the center of arRNAs 
for all of our subsequent studies.

We also tested the targeting flexibility of LEAPER. For all 16 trip-
let combinations (5′-N1AN2) on Reporter-3 (Supplementary Fig. 5c),  
we fixed the arRNA length (111-nt) and ensured the preferred A-C 
mismatch (Fig. 2f and Supplementary Table 2). NGS results showed 
that all N1AN2 motifs could be edited. The UAN2 and GAN2 are 
the most and the least preferable motifs, respectively (Fig. 2f,g). 
Collectively, the nearest neighbor preference of the target adenosine 
is 5′ U > C ≈ A > G and 3′ G > C > A ≈ U (Fig. 2g).

Editing endogenous transcripts using LEAPER. Next, we exam-
ined whether LEAPER could enable effective editing on endogenous 
transcripts. Using arRNAs of different lengths, we targeted the UAG 
motifs in the transcripts of PPIB, KRAS and SMAD4 genes and an 
UAC motif in FANCC gene transcript (Fig. 3a and Supplementary 
Table 2). Encouragingly, targeted adenosine sites in all four tran-
scripts were edited by their corresponding arRNAs with all  
four sizes, and longer arRNAs tended to yield higher editing rates 
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(Fig. 3b). Of note, the 151-nt arRNAPPIB edited ~50% of total tran-
scripts of PPIB gene (Fig. 3b). No arRNAs showed RNAi effects 
on their targeted transcripts (Supplementary Fig. 6a) or ultimate 
protein level (Supplementary Fig. 6b). Besides, LEAPER is able 
to achieve desirable editing rate on non-UAN sites (Fig. 3c and 
Supplementary Table 2), showing the flexibility of LEAPER on edit-
ing endogenous transcripts. We further tested whether LEAPER 
could simultaneously target multiple sites. We observed multiplex 
editing of both TARDBP and FANCC transcripts by coexpression 
of two arRNAs (Supplementary Table 2), with the efficiency even 
higher than those with individual arRNAs (Fig. 3d), indicating that 
LEAPER is multiplexable.

Because ADAR1/2 tend to promiscuously deaminate multiple 
adenosines in an RNA duplex45, all adenosines on target transcripts 

within the arRNA coverages are likely subjected to variable levels of 
editing. The longer the arRNA, the higher the possibility of such off-
targets. We therefore examined all adenosine sites within the arRNA 
covering regions in these targeted transcripts. For PPIB transcripts, 
very little off-target editing was observed throughout the sequenc-
ing window for variable sizes of arRNAs (Fig. 3e,f). However, in tar-
geting KRAS, SMAD4 and FANCC genes, multiple off-target edits 
were detected (Supplementary Fig. 7a–f). For KRAS in particular, 
11 out of 30 adenosines underwent substantial A-to-I conversions 
in the sequencing window of arRNA111 (Supplementary Fig. 7a,b).

We next attempted to minimize such off-target effects. Because 
an A-G mismatch suppressed editing for UAG targeting (Fig. 2a), 
we postulated that pairing a guanosine with a non-targeting ade-
nosine might reduce undesirable editing. We then tested the effect 
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Fig. 1 | Leveraging endogenous ADAR1 protein for targeted RNA editing. a, Schematic of the Reporter-1 and the 70-nt arRNA. b, Representative FACS 
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of the A-G mismatch on adenosine in all possible triplet combi-
nations (5′-N1AN2) as in Reporter-3 (Supplementary Fig. 5c and 
Supplementary Table 2). In comparison with A-C mismatch, A-G 
mismatch decreased the editing on adenosine in all tested triplets, 
except for UAG and AAG (~2%) (Fig. 3g). To further reduce edit-
ing rates at unwanted sites, we went on testing the effect of two  

consecutive mismatches. It turned out that the additional mismatch 
at the 3′ end nucleotide of the triplet opposite to either UAG or 
AAG abolished its corresponding adenosine editing (Fig. 3h and 
Supplementary Table 2). In light of these findings, we attempted to 
apply this rule to reduce off-targets in KRAS transcripts. We first 
designed an arRNA111-AG6 that created A-G mismatches on all 
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‘editing-prone’ motifs covered by arRNA111 (Fig. 3i, Supplementary 
Fig. 7a and Supplementary Table 2), including AAU (the 61st), UAU 
(the 63rd), UAA (the 65th), AAA (the 66th), UAG (the 94th) and 
AAG (the 99th). This arRNA111-AG6 eliminated most of the off-
target editing, while maintained an on-target editing rate of ~5%. 
Consistent with the findings in Fig. 3g, the single A-G mismatch 
could not completely minimize editing in AAG motif (99th) (Fig. 3i  
and Supplementary Fig. 7a). We then added more mismatches 
on arRNA111-AG6, including a dual mismatch (5′-CGG opposite 
to the targeted motif 5′-AAG), plus three additional A-G mis-
matches to mitigate editing on the 27th, 98th and the 115th adeno-
sines (arRNA111-AG9) (Supplementary Table 2). Consequently, we 
achieved a much improved specificity for editing, without addi-
tional loss of editing rate on the targeted site (A76) (Fig. 3i). In sum-
mary, engineered LEAPER incorporating additional rules enables 
efficient and more precise RNA editing on endogenous transcripts.

RNA editing specificity of LEAPER. In addition to the arRNA-
covered dsRNA region, the potential off-targets may occur on  
other transcripts through partial base pairing of arRNA. We then 

performed a transcriptome-wide RNA-sequencing analysis to eval-
uate the global off-target effects of LEAPER. Cells were transfected 
with plasmids expressing Ctrl RNA151 or arRNA151-PPIB before 
being subjected to RNA-seq analysis. We identified six potential off-
targets in the Ctrl RNA151 group (Fig. 4a) and five in the arRNA151-
PPIB group (Fig. 4b), and the PPIB on-target rate based on NGS 
analysis was ~37% (Fig. 4b). Further analysis revealed that all sites, 
except for the two sites from EIF2AK2 transcripts, were located in 
either SINE (Alu) or LINE regions (Fig. 4a,b); both of which are 
prone to ADAR-mediated editing46, suggesting that these off-targets 
may not be derived from pairing between the target transcripts 
and the arRNA or control RNA. Of note, two off-targeting tran-
scripts, WDR73 and SMYD4, appeared in both groups, suggest-
ing they are unlikely to be involved in sequence-dependent RNA 
editing. Indeed, minimum free energy analysis indicated that all 
these possible off-target transcripts failed to form a stable duplex 
with either Ctrl RNA151 or arRNA151-PPIB (Fig. 4c). To further 
test whether arRNA generates sequence-dependent off-targets, we 
selected potential off-target sites by comparing sequence similar-
ity for both arRNA151-PPIB and arRNA111-FANCC. TRAPPC12 
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transcripts for arRNA151-PPIB and three sites in the ST3GAL1, 
OSTM1-AS1 and EHD2 transcripts for arRNA111-FANCC were top 
candidates (Supplementary Fig. 8a,b). NGS analysis revealed that 
no editing could be detected in any of these predicted off-target 
sites (Supplementary Fig. 8a,c). These results indicate that LEAPER 
empowers efficient editing at the targeted site, while maintaining 
transcriptome-wide specificity without detectable sequence-depen-
dent off-target edits.

Safety assessment of LEAPER in mammalian cells. Because 
arRNAs rely on endogenous ADAR proteins for editing on-target 
transcripts, we wondered whether exogenous arRNAs affects native 
RNA editing events. Therefore, we analyzed the A-to-I RNA edit-
ing sites shared by a mock group and arRNA151-PPIB group from 
the transcriptome-wide RNA-sequencing results. Neither the Ctrl 
RNA151 group nor the arRNA151-PPIB group showed a significant 
difference compared to the mock group (Fig. 4d,e), indicating that 
LEAPER had little impact on the normal A-to-I editing function of 
endogenous ADAR1.

To verify whether arRNA affects global gene expression, we per-
formed differential gene expression analysis. In correlation analysis 
with the fragment per kilobase of exon model per million (FPKM) 
expression data, neither Ctrl RNA151 nor arRNA151-PPIB affected 
the global gene expression in comparison with the mock group 
(Fig. 4f,g). Moreover, DESeq2 analysis also revealed that there was 
no significant differential gene expression between the arRNA151-
PPIB group and Ctrl RNA151 group (Supplementary Fig. 9 and 
Supplementary Table 3). Consistent with our previous observation 
(Supplementary Fig. 6a), arRNAs did not show any RNAi effect on 
the expression of PPIB (Fig. 4f,g and Supplementary Fig. 9).

Considering that the arRNA forms an RNA duplex with the tar-
get transcript and that RNA duplex might elicit an innate immune 
response, we investigated whether the introduction of arRNA 
has such an effect. To test this, we selected arRNAs targeting four 

gene transcripts that had proved effective. We did not observe any 
mRNA induction of interferon-β (IFN-β) (Supplementary Fig. 10a) 
or interleukin-6 (IL-6) (Supplementary Fig. 10b), which are two 
hallmarks of innate immune activation. As a positive control, a syn-
thetic analog of dsRNA-poly(I:C) induced strong IFN-β and IL-6 
expression (Supplementary Fig. 10a,b). LEAPER does not seem to 
induce immunogenicity in target cells, a feature that is important 
for safe therapeutics.

Corrections of pathogenic mutations by LEAPER. We next inves-
tigated whether LEAPER could be used to correct more pathogenic 
mutations. Aimed at clinically relevant mutations from six patho-
genic genes, COL3A1, BMPR2, AHI1, FANCC, MYBPC3 and IL2RG, 
we designed 111-nt arRNAs for each of these genes carrying cor-
responding pathogenic G-to-A mutations (Supplementary Fig. 11a  
and Supplementary Tables 2 and 4). By coexpressing arRNA/com-
plementary DNA pairs in HEK293T cells, we identified significant 
amounts of target transcripts with A-to-G corrections in all tests 
(Supplementary Fig. 11b). Because G-to-A mutations account for 
nearly half of known disease-causing point mutations in humans10,47, 
the A-to-G conversion by LEAPER may offer immense opportuni-
ties for therapeutics.

RNA editing in multiple human primary cells by LEAPER. To 
further explore its clinical use, we set out to test LEAPER in multiple 
human primary cells. First, we tested LEAPER in human primary 
pulmonary fibroblasts and human primary bronchial epithelial cells 
with 151-nt arRNA (Supplementary Table 2) to edit the Reporter-1 
(Supplementary Fig. 5a). We found that 35–45% of EGFP+ cells 
could be obtained by LEAPER in both human primary cells  
(Fig. 5a). We then tested LEAPER in editing endogenous gene PPIB 
in these two primary cells and human primary T cells and found that 
arRNA151-PPIB could achieve >40, >80 and >30% of editing rates in 
human primary pulmonary fibroblasts, primary bronchial epithelial 
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cells (Fig. 5b) and primary T cells (Fig. 5c), respectively. The high 
editing efficiency of LEAPER in human primary cells is particularly 
encouraging for its potential application in therapeutics.

RNA editing by clinically relevant formats of arRNAs. We then 
investigated whether LEAPER could be delivered by more clinically 
relevant methods. We first tested the effect of arRNA through len-
tivirus-based expression. Reporter-1-targeting arRNA151 induced 
strong EGFP expression in more than 40% of total cells harboring 
the Reporter-1 in HEK293T cells 2 d post infection (dpi). At 8 dpi, 
the EGFP ratio maintained at a comparable level of ~38% (Fig. 5d 
and Supplementary Table 2), suggesting that LEAPER could be tai-
lored to therapeutics that require continuous administration. For 
native gene editing, we delivered PPIB-targeting arRNA151 through 
lentiviral transduction and observed over 6% of target editing at 
6 dpi (Fig. 5e).

We next tested synthesized arRNA oligonucleotides and electro-
poration delivery method for LEAPER. The 111-nt arRNA targeting 
PPIB transcripts as well as Ctrl RNA were chemically synthesized 
with 2′-O-methyl and phosphorothioate linkage modifications 

at the first three and last three residues of arRNAs (Fig. 5f). After 
being introduced into T  cells through electroporation, arRNA111-
PPIB oligos achieved ~20% of editing on PPIB transcripts (Fig. 5g), 
indicating that LEAPER holds promise for the development of oli-
gonucleotide drugs.

Recovery of transcriptional activity of p53W53X by LEAPER. Next, 
we studied the potential therapeutic use of LEAPER. We first tar-
geted the tumor suppressor gene TP53, which is known to play a 
vital role in the maintenance of cellular homeostasis, but undergo 
frequent mutations in >50% of human cancers48. The c.158G-to-
A mutation in TP53 is a clinically relevant non-sense mutation 
(Trp53Ter), resulting in a non-functional truncated protein48. We 
designed one arRNA111 and two alternative arRNAs (arRNA111-
AG1 and arRNA111-AG4) (Supplementary Table 2), all targeting 
TP53W53X transcripts (Fig. 6a), with the last two being designed to 
minimize potential off-targets. We generated HEK293T TP53−/− cell 
line to eliminate the effects of native p53 protein. All three forms 
of TP53W53X-targeting arRNAs converted ~25–35% of TP53W53X 
transcripts on the mutated adenosine site (Fig. 6b), with variable 
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reductions of unwanted edits for arRNA111-AG1 and arRNA111-
AG4 (Supplementary Fig. 12). Western blot showed that arRNA111, 
arRNA111-AG1 and arRNA111-AG4 could all rescue the production 
of full-length p53 protein based on the TP53W53X transcripts in 
HEK293T TP53−/− cells, while the Ctrl RNA111 could not (Fig. 6c). 
Using a p53-luciferase cis-reporting system49,50, we found all three 
versions of arRNAs could restore p53 activity in transcriptional 
regulation, and the optimized version arRNA111-AG1 performed 
the best (Fig. 6d). In conclusion, we demonstrated that LEAPER is 
capable of repairing the cancer-relevant premature stop codon of 
TP53 and restoring its function.

Restoration of α-l-iduronidase (IDUA) activity by LEAPER. 
Finally, we examined the potential of LEAPER in treating a mono-
genic disease—Hurler syndrome, the most severe subtype of 
Mucopolysaccharidosis type I (MPS I) due to the deficiency of 
IDUA, a lysosomal metabolic enzyme responsible for the degra-
dation of mucopolysaccharides51. We chose a primary fibroblast 
GM06214 that was originally isolated from Hurler syndrome 
patient. The GM06214 cells contain a homozygous TGG-to-TAG 
mutation in exon 9 of the IDUA gene, resulting in a Trp402Ter 
mutation in the protein. We designed two versions of arRNAs by 
synthesized RNA oligonucleotides with chemical modifications, 
arRNA111-IDUA-V1 and arRNA111-IDUA-V2, targeting the mature 
mRNA and the pre-mRNA of IDUA, respectively (Fig. 7a and 
Supplementary Table 2). After introduction of arRNA111-IDUA-V1  
or arRNA111-IDUA-V2 into GM06214 cells via electroporation, 
we measured the targeted RNA editing rates via NGS analysis 
and the catalytic activity of IDUA. Both arRNA111-IDUA-V1 and 
arRNA111-IDUA-V2 significantly restored the IDUA catalytic activ-
ity in IDUA-deficient GM06214 cells progressively with time after 
electroporation, and arRNA111-IDUA-V2 performed much better 
than arRNA111-IDUA-V1, while no IDUA activity could be detected 
in three control groups (Fig. 7b).

To further evaluate the extent to which the restored IDUA activ-
ity in GM06214 by LEAPER relieves Hurler syndrome, we examined 
the IDUA activity in GM01323 cells, another primary fibroblast 
from a patient with Scheie syndrome, a much milder subtype of 
MPS I than Hurler syndrome due to the remnant IDUA activ-
ity. We found that the catalytic activity of IDUA in GM06214 cells 
harboring arRNA111-IDUA-V2 was higher than GM01323 cells 
48 h post electroporation (Fig. 7b). Consistent with these results, 
NGS analysis indicated that arRNA111-IDUA-V2 converted nearly 
30% of A-to-I editing, a much higher rate than arRNA111-IDUA-V1  
(Fig. 7c). Further analysis revealed that minimal unwanted edits 
were detected within the arRNA-covered regions of IDUA transcripts  
(Fig. 7d). Neither arRNA111-IDUA-V1 nor arRNA111-IDUA-V2 
induced expressions of a panel of genes involved in type-I interferon 
and pro-inflammatory responses (Fig. 7e). These results showed  
the therapeutic potential of LEAPER in targeting certain  
monogenetic diseases.

Discussion
In this report, we show that expression of a linear arRNA of 
adequate length can guide endogenous ADAR proteins to edit 
adenosine to inosine on targeted transcripts. LEAPER has several 
advantages over existing editing approaches. The small size of the 
arRNA molecule is reminiscent of RNAi, in which a small dsRNA 
induces a native mechanism for targeted RNA degradation52, 
and enables delivery by a variety of viral and non-viral vehicles. 
Unlike RNAi, LEAPER catalyzes a precise A-to-I switch without 
cutting or degrading targeted transcripts (Supplementary Fig. 6a).  
Although the length requirement for arRNA is longer than for 
RNAi, arRNA neither induces immune-stimulatory effects at the 
cellular level (Supplementary Fig. 10 and Fig. 7e) nor affects the 
function of endogenous ADAR proteins (Fig. 4d,e), making it a 

safe strategy for RNA targeting. In contrast, ectopic expression of 
ADAR proteins or their catalytic domains has been reported to 
induce substantial global off-target edits32 and possibly cancer31. 
Similarly, DNA base editors have been reported to generate sub-
stantial off-target single-nucleotide variants in mouse embryos, 
rice or human cell lines due to the expression of an effector pro-
tein53–56. LEAPER achieves efficient editing with rare global off-
target editing (Fig. 4a,b and Supplementary Fig. 8). In addition, 
it may be less immunogenic than methods that require the intro-
duction of foreign proteins.

In comparison with RESTORE40, a recently reported RNA edit-
ing method, of which the gRNA of RESTORE is limited to che-
mosynthetic antisense oligonucleotides depending on complex 
chemical modification, arRNA of LEAPER can be generated in a 
variety of ways, including chemical synthesis and expression in vivo 
from viral or non-viral vectors (Fig. 5).

There is still room for improvement in LEAPER′s efficiency 
and specificity. arRNA fused with an ADAR-recruiting scaffold 
may increase local ADAR protein concentration and consequently 
enhance editing yield. Ways of stabilizing arRNA or increasing its 
expression may further boost RNA editing efficiency. We envisage 
that LEAPER holds potential for broad applications in therapeutics 
and biomedical research.

online content
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Methods
Plasmids construction. For the three versions of dual fluorescence reporters 
(Reporter-1, -2 and -3), mCherry and EGFP (the start codon ATG of EGFP 
was deleted) coding sequences were PCR amplified, digested using BsmBI 
(ThermoFisher Scientific, ER0452), followed by T4 DNA ligase (NEB, M0202L)-
mediated ligation with GGGGS linkers. The ligation product was subsequently 
inserted into the pLenti-CMV-MCS-PURO backbone.

For the dLbuCas13-ADARDD (E1008Q) expressing construct, the ADAR1DD 
gene was amplified from the ADAR1p150 construct (a gift from J. Han’s laboratory, 
Xiamen University). The dLbuCas13 gene was amplified by PCR from the 
Lbu_C2c2_R472A_H477A_R1048A_ H1053A plasmid (Addgene no. 83485). The 
ADAR1DD (hyperactive E1008Q variant) was generated by overlap-PCR and then 
fused to dLbuCas13. The ligation products were inserted into the pLenti-CMV-
MCS-BSD backbone.

For arRNA-expressing construct, the sequences of arRNAs were synthesized 
and golden-gate cloned into the pLenti-sgRNA-lib 2.0 (Addgene no. 89638) 
backbone, and the transcription of arRNA was driven by hU6 promoter. For the 
ADAR-expressing constructs, the full-length ADAR1p110 and ADAR1p150 were PCR 
amplified from the ADAR1p150 construct, and the full-length ADAR2 were PCR 
amplified from the ADAR2 construct (a gift from J. Han’s laboratory, Xiamen 
University). The amplified products were then cloned into the pLenti-CMV-MCS-
BSD backbone. The dPspCas13b-ADAR2DD-E488Q plasmid was purchased from 
Addgene (no. 103849).

For the constructs expressing genes with pathogenic mutations, full-length 
coding sequences of TP53 (ordered from Vigenebio) and another six disease-
relevant genes (COL3A1, BMPR2, AHI1, FANCC, MYBPC3 and IL2RG, gifts from 
J. Wang’s laboratory, Institute of Pathogen Biology, Chinese Academy of Medical 
Sciences) were amplified from the constructs encoding the corresponding genes 
with introduction of G-to-A mutations through mutagenesis PCR. The amplified 
products were cloned into the pLenti-CMV-MCS-mCherry backbone through the 
Gibson cloning method57.

Cell culture. The HeLa and B16 cell lines came from Z. Jiang’s laboratory 
(Peking University) and the HEK293T cell line was from C. Zhang’s laboratory 
(Peking University). The RD cell line came from J. Wang’s laboratory (Institute 
of Pathogen Biology, Peking Union Medical College & Chinese Academy of 
Medical Sciences). SF268 cell lines were from the Cell Center, Institute of Basic 
Medical Sciences, Chinese Academy of Medical Sciences. A549 and SW13  
cell lines were from EdiGene Inc. HepG2, HT29, NIH3T3 and MEF cell lines 
were maintained in our laboratory at Peking University. These mammalian cell 
lines were cultured in Dulbecco′s Modified Eagle Medium (Corning,  
10-013-CV) with 10% fetal bovine serum (FBS) (CellMax, SA201.02), 
additionally supplemented with 1% penicillin–streptomycin under 5% CO2 at 
37 °C. Unless otherwise described, cells were transfected with the X-tremeGENE 
HP DNA transfection reagent (Roche, 06366546001) according to the 
manufacturer′s instructions.

The human primary pulmonary fibroblasts (no. 3300) and human primary 
bronchial epithelial cells (no. 3210) were purchased from ScienCell Research 
Laboratories, Inc. and were cultured in Fibroblast Medium (ScienCell, no. 2301) 
and Bronchial Epithelial Cell Medium (ScienCell, no. 3211), respectively. Both 
media were supplemented with 15% FBS (BI) and 1% penicillin–streptomycin. 
The primary GM06214 and GM01323 cells were ordered from Coriell Institute for 
Medical Research and cultured in Dulbecco′s Modified Eagle Medium (Corning, 
10-013-CV) with 15% FBS (BI) and 1% penicillin–streptomycin. All cells were 
cultured under 5% CO2 at 37 °C.

Isolation and culture of human primary T cells. Primary human T cells 
were isolated from leukapheresis products from healthy human donor. Briefly, 
peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll centrifugation 
(Dakewei, AS1114546), and T cells were isolated by magnetic negative selection 
using an EasySep Human T Cell Isolation Kit (STEMCELL, 17951) from PBMCs. 
After isolation, T cells were cultured in X-vivo15 medium, 10% FBS and IL2 
(1,000 U ml–1) and stimulated with CD3/CD28 DynaBeads (ThermoFisher, 
11131D) for 2 d. Leukapheresis products from healthy donors were acquired from 
AllCells LLC China. All healthy donors provided informed consent.

Cell line construction. For the stable reporter cell lines, the reporter constructs 
(pLenti-CMV-MCS-PURO backbone) were cotransfected into HEK293T 
cells, together with two viral packaging plasmids, pR8.74 and pVSVG. After 
72 h, the supernatant virus was collected and stored at −80 °C. The HEK293T 
cells were infected with lentivirus, then mCherry-positive cells were sorted 
via fluorescence-activated cell sorting (FACS) and cultured to select a single 
clone cell lines stably expressing dual fluorescence reporter system without 
detectable EGFP background. The HEK293T ADAR1−/− and TP53−/− cell lines 
were generated according to a previously reported method58. ADAR1-targeting 
single-guide RNA and PCR amplified donor DNA containing CMV-driven 
puromycin resistant gene were cotransfected into HEK293T cells. Then cells 
were treated with puromycin 7 d after transfection. Single clones were isolated 
from puromycin resistant cells followed by verification through sequencing and 
western blot.

RNA editing of endogenous or exogenous-expressed transcripts. For assessing 
RNA editing on the dual fluorescence reporter, HEK293T cells or HEK293T 
ADAR1−/− cells were seeded in six-well plates (6 × 105 cells per well). After 24 h, 
cells were cotransfected with 1.5 μg reporter plasmids and 1.5 μg arRNA plasmids. 
To examine the effect of ADAR1p110, ADAR1p150 or ADAR2 protein expression, the 
editing efficiency was assayed by EGFP+ ratio and deep sequencing.

HEK293T ADAR1−/− cells were seeded in 12-well plates (2.5 × 105 cells per 
well), then 24 h later, cells were cotransfected with 0.5 μg of reporter plasmids, 
0.5 μg arRNA plasmids and 0.5 μg ADAR1/2 plasmids (pLenti backbone as 
control). The editing efficiency was assayed by EGFP+ ratio and deep sequencing.

To assess RNA editing on endogenous mRNA transcripts, HEK293T cells were 
seeded in six-well plates (6 × 105 cells per well). Twenty-four hours later, cells were 
transfected with 3 μg of arRNA plasmids. The editing efficiency was assayed by 
deep sequencing.

To assess RNA editing efficiency in multiple cell lines, 8–9 × 104 (RD, SF268, 
HeLa) or 1.5 × 105 (HEK293T) cells were seeded in 12-well plates. For cells 
difficult to transfect, such as HT29, A549, HepG2, SW13, NIH3T3, MEF and B16, 
2–2.5 × 105 cells were seeded in a six-well plate. Twenty-four hours later, reporters 
and arRNAs plasmid were cotransfected into these cells. The editing efficiency was 
assayed by an EGFP+ ratio.

To evaluate the EGFP+ ratio, at 48–72 h post transfection, cells were sorted 
and collected by FACS analysis. The mCherry signal was served as a fluorescent 
selection marker for the reporter/arRNA-expressing cells, and the percentages of 
EGFP+/mCherry+ cells were calculated as the readout for editing efficiency.

For NGS quantification of the A-to-I editing rate, at 48–72 h post transfection, 
cells were sorted and collected by FACS assay and were then subjected to RNA 
isolation (TIANGEN, DP420). Then, the total RNAs were reverse-transcribed into 
cDNA via PCR with reverse transcription (RT–PCR) (TIANGEN, KR103-04), and 
the targeted locus was PCR amplified with the corresponding primers (listed in 
Supplementary Table 5). The PCR products were purified for Sanger sequencing or 
NGS (Illumina HiSeq X Ten).

RNA editing analysis for targeted sites. For deep sequencing analysis, an index 
was generated using the targeted site sequence (upstream and downstream 20-nt)  
of arRNA covering sequences. Reads were aligned and quantified using BWA 
(v.0.7.10-r789). Alignment BAMs were then sorted by Samtools, and RNA editing 
sites were analyzed using REDitools (v.1.0.4). The parameters are as follows: -U 
[AG or TC] -t 8 -n 0.0 -T 6-6 -e -d -u. All the significant A-to-G conversion within 
the arRNA targeting region calculated by Fisher′s exact test (P value < 0.05) were 
considered as edits by arRNA. The conversions except for targeted adenosine were 
off-target edits. The mutations that appeared in control and experimental groups 
simultaneously were considered to be due to single nucleotide polymorphism.

Transcriptome-wide RNA-sequencing analysis. The Ctrl RNA151 or arRNA151-
PPIB-expressing plasmids with the blue fluorescent protein (BFP) expression 
cassette were transfected into HEK293T cells. The BFP+ cells were enriched by 
FACS 48 h after transfection, and RNAs were purified with RNAprep Pure Micro 
kit (TIANGEN, DP420). The mRNA was then purified using NEBNext Poly(A) 
mRNA Magnetic Isolation Module (New England Biolabs, E7490), processed with 
the NEBNext Ultra II RNA Library Prep Kit for Illumina (New England Biolabs, 
E7770), followed by deep sequencing analysis using Illumina HiSeq X Ten platform 
(2 × 150-base pair paired end; 30G for each sample). To exclude nonspecific effect 
caused by transfection, we included the mock group in which we only treated cells 
with transfection reagent. Each group contained four replications.

The bioinformatics analysis pipeline followed the work by Vogel et al.22. The 
quality control of analysis was conducted by using FastQC, and quality trim was 
based on Cutadapt (the first 6-bp for each read were trimmed and up to 20-bp 
were quality trimmed). AWK scripts were used to filtered out the introduced 
arRNAs. After trimming, reads with lengths shorter than 90-nt were filtered 
out. Subsequently, the filtered reads were mapped to the reference genome 
(GRCh38-hg38) by STAR software59. We used the GATK Haplotypcaller60 to call 
the variants. The raw VCF (variant call format) files generated by GATK were 
filtered and annotated by GATK VariantFiltration, bcftools and ANNOVAR61. The 
variants in dbSNP, 1,000 Genome62 and EVS were filtered out. The shared variants 
in four replicates of each group were then selected as the RNA editing sites. The 
RNA editing level of the mock group was viewed as the background, and the 
global targets of Ctrl RNA151 and arRNA151-PPIB were obtained by subtracting the 
variants in the mock group.

To assess whether LEAPER perturbs natural editing homeostasis, we analyzed 
the global editing sites shared by the mock group and arRNA151-PPIB group (or 
Ctrl RNA151 group). The differential RNA editing rates at native A-to-I editing sites 
were assessed using Pearson′s correlation coefficient analysis. Pearson correlations 
of the editing rate between the mock group and arRNA151-PPIB group (or Ctrl 
RNA151 group) were calculated and annotated in Fig. 6.

ρ
μ μ
σ σ

=
− −

X Y
E X Y

( , )
[( ) ( )]X Y

X Y

where X means the editing rate of each site in the mock group; Y means the  
editing rate of each site in the Ctrl RNA151 group (Fig. 6a) or arRNA151-PPIB group 
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(Fig. 6b); σX is the standard deviation of X; σY is the standard deviation of Y; μX is 
the mean of X; μΥ is the mean of Y and E is the expectation.

The RNA-Seq data were analyzed for the interrogation of possible 
transcriptional changes induced by RNA editing events. The analysis of 
transcriptome-wide gene expression was performed using HISAT2 (v.2.1.0) 
and STRINGTIE (v.1.3.4d) software63. We used Cutadapt (v.1.16) and FastQC 
(v.0.11.8) for the quality control of the sequencing data. Then the sequencing reads 
were mapped to reference genome (GRCh38-hg38) using HISAT2, followed by 
Pearson′s correlation coefficient analysis as mentioned above. The FPKM value 
was calculated with STRINGTIE.

We then used DESeq2 (v.1.18.1)64 to calculate the differential gene expression 
with the FPKM expression data. Genes with an FPKM value less than one in all 
the four replicates were set at one for correction. Genes with adjusted P values 
less than 0.01 and log2(fold change) greater than two were filtered and regarded as 
significantly differentially expressed genes.

Western blot. We used the mouse monoclonal primary antibodies, respectively, 
against ADAR1 (Santa Cruz, sc-271854), ADAR2 (Santa Cruz, sc-390995), ADAR3 
(Santa Cruz, sc-73410), p53 (Santa Cruz, sc-99), KRAS (Sigma, SAB1404011), 
GAPDH (Santa Cruz, sc-47724) and β-tubulin (CWBiotech, CW0098). The 
HRP-conjugated goat anti-mouse IgG (H + L, 115-035-003) secondary antibody 
was purchased from Jackson ImmunoResearch. Then, 2 × 106 cells were sorted 
to be lysed and an equal amount of each lysate was loaded for SDS–PAGE. Then, 
sample proteins were transferred onto polyvinylidene difluoride membrane 
(Bio-Rad Laboratories) and immunoblotted with primary antibodies against one 
of the ADAR enzymes (anti-ADAR1, 1:500; anti-ADAR2, 1:100; anti-ADAR3, 
1:800), followed by secondary antibody incubation (1:10,000) and exposure. The 
β-tubulins were re-probed on the same polyvinylidene difluoride membrane after 
stripping of the ADAR proteins with the stripping buffer (CWBiotech, CW0056). 
The experiments were repeated three times. The semi-quantitative analysis was 
done with Image Lab software.

Cytokine expression assay. HEK293T cells were seeded on 12-well plates (2 × 105 
cells per well). When approximately 70% confluent, cells were transfected with 
1.5 μg of arRNA. As a positive control, 1 μg of poly(I:C) (Invitrogen, tlrl-picw) 
was transfected. Forty-eight hours later, cells were collected and subjected to RNA 
isolation (TIANGEN, DP430). Then, the total RNAs were reverse-transcribed into 
cDNA via RT–PCR (TIANGEN, KR103-04), and the expression of IFN-β and IL-6 
were measured by qPCR (TAKARA, RR820A). The sequences of the primers are 
listed in the Supplementary Table 5.

Transcriptional regulatory activity assay of p53. The TP53W53X cDNA-expressing 
plasmids and arRNA-expressing plasmids were cotransfected into HEK293T 
TP53−/− cells, together with p53-Firefly-luciferase cis-reporting plasmids (YRGene, 
VXS0446) and Renilla-luciferase plasmids (a gift from Z. Jiang’s laboratory, Peking 
University) for detecting the transcriptional regulatory activity of p53. Then, 48 h 
later, the cells were collected and assayed with the Promega Dual-Glo Luciferase 
Assay System (Promega, E4030) according to the manufacturer’s protocol. Briefly, 
150 μl Dual-Glo Luciferase Reagent was added to the collected cell pellet and, 
30 min later, the Firefly luminescence was measured by adding 100 μl Dual-Glo 
Luciferase Reagent (cell lysis) to a 96-well white plate by the Infinite M200 reader 
(TECAN). After 30 min, 100 μl Dual-Glo stop and Glo Reagent were sequentially 
added to each well to measure the Renilla luminescence and calculate the ratio of 
Firefly luminescence to Renilla luminescence.

Electroporation in primary cells. For arRNA-expressing plasmids electroporation 
in the human primary pulmonary fibroblasts or human primary bronchial 
epithelial cells, 20 μg plasmids were electroporated with Nucleofector 2b Device 
(Lonza) and Basic Nucleofector Kit (Lonza, VPI-1002), and the electroporation 

program was U-023. For arRNA-expressing plasmids electroporation in human 
primary T cells, 20 μg plasmids were electroporated into human primary T with 
Nucleofector 2b Device (Lonza) and Human T cell Nucleofector Kit (Lonza, 
VPA-1002), and the electroporation program was T-024. Forty-eight hours post 
electroporation, cells were sorted and collected by FACS assay and were then 
subjected to the following deep sequencing for targeted RNA editing assay. The 
electroporation efficiency was normalized according to the fluorescence marker.

For the chemosynthetic arRNA or control RNA electroporation in human 
primary T cells or primary GM06214 cells, RNA oligonucleotide was dissolved in 
100 μl opti-MEM medium (Gibco, 31985070) with the final concentration 2 μM. 
Then 1 × 106 GM06214 cells or 3 × 106 T cells were resuspended with the above 
electroporation mixture and electroporated with Agile Pulse In Vivo device (BTX) 
at 450 V for 1 ms. Then the cells were transferred to warm culture medium for the 
following assays.

IDUA catalytic activity assay. The gathered cell pellet was resuspended and lysed 
with 28 μl 0.5% Triton X-100 in 1 × PBS buffer on ice for 30 min. Then 25 μl of 
the cell lysis was added to 25 μl 190 μM 4-methylumbelliferyl-α-l-iduronidase 
substrate (Cayman, 2A-19543-500), which was dissolved in 0.4 M sodium formate 
buffer containing 0.2% Triton X-100, pH 3.5 and incubated for 90 min at 37 °C 
in the dark. The catalytic reaction was quenched by adding 200 μl 0.5 M NaOH/
Glycine buffer, pH 10.3 and then centrifuged for 2 min at 4 °C. The supernatant was 
transferred to a 96-well plate, and fluorescence was measured at 365 nm excitation 
wavelength and 450 nm emission wavelength with Infinite M200 reader (TECAN).

Statistics. An unpaired two-sided Student′s t-test was implemented for group 
comparison as indicated in the figure legends. For transcriptome-wide RNA-seq 
data, DESeq2 (v.1.18.1) was used for analyzing statistical significance. Statistical 
analyses were performed with R and Prism 6 (GraphPad Software, Inc.).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data presented in this manuscript are available from the corresponding author 
upon reasonable request. Transcriptome-wide RNA-seq data are accessible via the 
NCBI Sequence Read Archive database with accession code PRJNA544353.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection No software was used.

Data analysis REDitools version 1.0.4 was used for targeted RNA editing analysis. FastQC, STAR, GATK Haplotypcaller, GATK VariantFiltration, bcftools, 
ANNOVAR, HISAT2, STRINGTIE and DESeq2 were adopted for transcriptome-wide RNA-sequencing analysis. The minimum free energy of 
double-stranded RNA was predicted by RNAhybrid. R script was used for ploting figure. GraphPad Prism 6 was used for basic statistical 
analysis and graph production. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data availability. Data are accessible via the NCBI Sequence Read Archive database with accession code PRJNA544353, or also are available from the corresponding 
author upon reasonable request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size In this study, targeted RNA editing of reporter transcripts or endogenous transcripts was done with independent experiments performed in 
parallel, and the numble of replicates was listed in the text and figure legends. Transcriptome-wide RNA-sequencing was done with four 
independent experiments performed in parallel. And the group sizes in other experiments were selected based on the prior knowledge of 
variation (e.g. Western blot, qPCR or FACS analysis).

Data exclusions No data were excluded.

Replication The numble of replications is always mentioned in text, methods and figure legends. All attempts at replication were successful.

Randomization During FACS experiments for sorting transfected cells, all the cells were transfected and sorted via FACS according to the corresponding 
fluorescence maker, and untreated group and mock group (fluorescence-negative) were conducted for gating.

Blinding No blinding was performed due to the involvement of several experimentators.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Anti-ADAR1 antibody (Santa Cruz, sc271854); Anti-ADAR2 antibody (Santa Cruz, sc390995); Anti-ADAR3 antibody (Santa Cruz, 

sc73410); Anti-p53 antibody  (Santa Cruz, sc-99); Anti-KRAS antibody (Sigma, SAB1404011); Anti-GAPDH antibody (Santa Cruz, 
sc47724); Anti-beta-tubulin antibody (CWBiotech, CW0098).

Validation All antibodies used in this study were validated by the manufacturer, and the western blot experiments were performed 
according to the manufacturer's instruction. And the western blot data were provided in the manuscript.
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) The HeLa and B16 cell lines were from Z. Jiang’s laboratory (Peking University). And the HEK293T cell line was from C. Zhang’s 
laboratory (Peking University). RD cell line was from J Wang's  laboratory (Institute of Pathogen Biology, Peking Union 
Medical College & Chinese Academy of Medical Sciences). SF268 cell lines was from Cell Center, Institute of Basic Medical 
Sciences, Chinese Academy of Medical Sciences. A549, SW13, HepG2, HT29, NIH3T3, and MEF cell lines were maintained in 
W Wei's laboratory (Peking University). Human primary pulmonary fibroblast or human primary bronchial epithelial cell were 
purchased from ScienCell Research Laboratories, Inc. Primary human T cells were isolated from leukapheresis products, 
which were purchased from AllCells LLC China.

Authentication STR analysis was used for cell line authentication.

Mycoplasma contamination All cells were tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Cells were transfected using the X-tremeGENE HP DNA transfection reagent (06366546001; Roche, Mannheim, German), 
according to the supplier’s protocols. About 48 to 72 hours later, cells were digested with trypsin and collected for the following 
FACS according to the fluorescence maker (mCherry, EGFP or BFP).

Instrument BD Aria SORP and BD LSRFortessa SORP

Software BD FACSDiva

Cell population abundance The fluorescence maker was encoded in the expression plasmids for sorting transfected cells, and about 7×10^5 cells were 
collected for further process.

Gating strategy Firstly, the starting cell population were selected according to SSC-A, FSC-A, SSC-W and SSC-H gates. Then fluorescence-positive 
cell population were determined according to the fluorescence-negative population control (untreated group or mock group).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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